Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction.
نویسندگان
چکیده
Epithelial-mesenchymal transition (EMT) is a phenotypic change in which epithelial cells detach from their neighbors and become motile. Whereas soluble signals such as growth factors and cytokines are responsible for stimulating EMT, here we show that gradients of mechanical stress define the spatial locations at which EMT occurs. When treated with transforming growth factor (TGF)-beta, cells at the corners and edges of square mammary epithelial sheets expressed EMT markers, whereas those in the center did not. Changing the shape of the epithelial sheet altered the spatial pattern of EMT. Traction force microscopy and finite element modeling demonstrated that EMT-permissive regions experienced the highest mechanical stress. Myocardin-related transcription factor (MRTF)-A was localized to the nuclei of cells located in high-stress regions, and inhibiting cytoskeletal tension or MRTF-A expression abrogated the spatial patterning of EMT. These data suggest a causal role for tissue geometry and endogenous mechanical stresses in the spatial patterning of EMT.
منابع مشابه
Spontaneous Mesenchymal to Epithelial Like Tissue Transition (MET) in a Long Term Human Skin Culture
In an attempt to isolate multipotent stem cells from foreskin in a long-term culture, we encountered an interesting phenomenon which was the conversion of the fibroblast dominant condition to epithelial-like tissue formation. However, the basic mechanism(s) which may be involved in this conversion is not clear. This study was designed to evaluate the cells protein secretion activity and examine...
متن کاملSubepithelial corneal fibrosis partially due to epithelial-mesenchymal transition of ocular surface epithelium
PURPOSE To determine whether epithelial-mesenchymal transition is involved in the development of corneal subepithelial fibrosis (pannus). METHODS Frozen samples of pannus tissue removed from human corneas with a diagnosis of total limbal stem cell deficiency were characterized by immunostaining for both epithelial and mesenchymal markers. We selected transformation-related protein 63 (p63) an...
متن کاملMatrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial–mesenchymal transition
Epithelial-mesenchymal transition (EMT) is a form of epithelial plasticity implicated in fibrosis and tumor metastasis. Here we show that the mechanical rigidity of the microenvironment plays a pivotal role in the promotion of EMT by controlling the subcellular localization and downstream signaling of Rac GTPases. Soft substrata, with compliances comparable to that of normal mammary tissue, are...
متن کاملCleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis
Epithelial tissues form a selective barrier that separates the external environment from the internal tissue milieu. Single epithelial cells are densely packed and associate via distinct intercellular junctions. Intercellular junction proteins not only control barrier properties of the epithelium but also play an important role in regulating epithelial homeostasis that encompasses cell prolifer...
متن کاملEpithelial-to-Mesenchymal and Mesenchymal-to-Epithelial Transition in Mesenchymal Tumors: A Paradox in Sarcomas?
The epithelial-to-mesenchymal transition (EMT) is a reversible process comprised of various subprograms via which epithelial cells reduce their intercellular adhesions and proliferative capacity while gaining a mesenchymal phenotype with increased migratory and invasive properties. This process has been well described in several carcinomas, which are cancers of epithelial origin, and is crucial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cellular biochemistry
دوره 110 1 شماره
صفحات -
تاریخ انتشار 2010